56 research outputs found

    Multi-Sided Boundary Labeling

    Full text link
    In the Boundary Labeling problem, we are given a set of nn points, referred to as sites, inside an axis-parallel rectangle RR, and a set of nn pairwise disjoint rectangular labels that are attached to RR from the outside. The task is to connect the sites to the labels by non-intersecting rectilinear paths, so-called leaders, with at most one bend. In this paper, we study the Multi-Sided Boundary Labeling problem, with labels lying on at least two sides of the enclosing rectangle. We present a polynomial-time algorithm that computes a crossing-free leader layout if one exists. So far, such an algorithm has only been known for the cases in which labels lie on one side or on two opposite sides of RR (here a crossing-free solution always exists). The case where labels may lie on adjacent sides is more difficult. We present efficient algorithms for testing the existence of a crossing-free leader layout that labels all sites and also for maximizing the number of labeled sites in a crossing-free leader layout. For two-sided boundary labeling with adjacent sides, we further show how to minimize the total leader length in a crossing-free layout

    Placing Labels in Road Maps: Algorithms and Complexity

    Get PDF
    A road map can be interpreted as a graph embedded in the plane, in which each vertex corresponds to a road junction and each edge to a particular road section. In this paper, we consider the computational cartographic problem to place non-overlapping road labels along the edges so that as many road sections as possible are identified by their name, i.e., covered by a label. We show that this is NP-hard in general, but the problem can be solved in O(n 3 ) time if the road map is an embedded tree with n vertices and constant maximum degree. This special case is not only of theoretical interest, but our algorithm in fact provides a very useful subroutine in exact or heuristic algorithms for labeling general road maps

    Automatic Label Placement in Maps and Figures: Models, Algorithms and Experiments

    Get PDF

    Efficient Algorithms for Ortho-Radial Graph Drawing

    Get PDF
    Orthogonal drawings, i.e., embeddings of graphs into grids, are a classic topic in Graph Drawing. Often the goal is to find a drawing that minimizes the number of bends on the edges. A key ingredient for bend minimization algorithms is the existence of an orthogonal representation that allows to describe such drawings purely combinatorially by only listing the angles between the edges around each vertex and the directions of bends on the edges, but neglecting any kind of geometric information such as vertex coordinates or edge lengths. Barth et al. [2017] have established the existence of an analogous ortho-radial representation for ortho-radial drawings, which are embeddings into an ortho-radial grid, whose gridlines are concentric circles around the origin and straight-line spokes emanating from the origin but excluding the origin itself. While any orthogonal representation admits an orthogonal drawing, it is the circularity of the ortho-radial grid that makes the problem of characterizing valid ortho-radial representations all the more complex and interesting. Barth et al. prove such a characterization. However, the proof is existential and does not provide an efficient algorithm for testing whether a given ortho-radial representation is valid, let alone actually obtaining a drawing from an ortho-radial representation. In this paper we give quadratic-time algorithms for both of these tasks. They are based on a suitably constrained left-first DFS in planar graphs and several new insights on ortho-radial representations. Our validity check requires quadratic time, and a naive application of it would yield a quartic algorithm for constructing a drawing from a valid ortho-radial representation. Using further structural insights we speed up the drawing algorithm to quadratic running time

    Towards a Topology-Shape-Metrics Framework for Ortho-Radial Drawings

    Get PDF
    Ortho-Radial drawings are a generalization of orthogonal drawings to grids that are formed by concentric circles and straight-line spokes emanating from the circles\u27 center. Such drawings have applications in schematic graph layouts, e.g., for metro maps and destination maps. A plane graph is a planar graph with a fixed planar embedding. We give a combinatorial characterization of the plane graphs that admit a planar ortho-radial drawing without bends. Previously, such a characterization was only known for paths, cycles, and theta graphs, and in the special case of rectangular drawings for cubic graphs, where the contour of each face is required to be a rectangle. The characterization is expressed in terms of an ortho-radial representation that, similar to Tamassia\u27s orthogonal representations for orthogonal drawings describes such a drawing combinatorially in terms of angles around vertices and bends on the edges. In this sense our characterization can be seen as a first step towards generalizing the Topology-Shape-Metrics framework of Tamassia to ortho-radial drawings
    • …
    corecore